The MarR-Type Regulator Rdh2R Regulates rdh Gene Transcription in Dehalococcoides mccartyi Strain CBDB1.

نویسندگان

  • Lydia Krasper
  • Hauke Lilie
  • Anja Kublik
  • Lorenz Adrian
  • Ralph Golbik
  • Ute Lechner
چکیده

Reductive dehalogenases are essential enzymes in organohalide respiration and consist of a catalytic subunit A and a membrane protein B, encoded by rdhAB genes. Thirty-two rdhAB genes exist in the genome of Dehalococcoides mccartyi strain CBDB1. To gain a first insight into the regulation of rdh operons, the control of gene expression of two rdhAB genes (cbdbA1453/cbdbA1452 and cbdbA1455/cbdbA1454) by the MarR-type regulator Rdh2R (cbdbA1456) encoded directly upstream was studied using heterologous expression and in vitro studies. Promoter-lacZ reporter fusions were generated and integrated into the genome of the Escherichia coli host. The lacZ reporter activities of both rdhA promoters decreased upon transformation of the cells with a plasmid carrying the rdh2R gene, suggesting that Rdh2R acts as repressor, whereas the lacZ reporter activity of the rdh2R promoter was not affected. The transcriptional start sites of both rdhA genes in strain CBDB1 and/or the heterologous host mapped to a conserved direct repeat with 11- to 13-bp half-sites. DNase I footprinting revealed binding of Rdh2R to a ∼30-bp sequence covering the complete direct repeat in both promoters, including the transcriptional start sites. Equilibrium sedimentation ultracentrifugation revealed that Rdh2R binds as tetramer to the direct-repeat motif of the rdhA (cbdbA1455) promoter. Using electrophoretic mobility shift assays, a similar binding affinity was found for both rdhA promoters. In the presence of only one half-site of the direct repeat, the interaction was strongly reduced, suggesting a positive cooperativity of binding, for which unusual short palindromes within the direct-repeat half-sites might play an important role. IMPORTANCE Dehalococcoides mccartyi strains are obligate anaerobes that grow by organohalide respiration. They have an important bioremediation potential because they are capable of reducing a multitude of halogenated compounds to less toxic products. We are now beginning to understand how these organisms make use of this large catabolic potential, whereby D. mccartyi expresses dehalogenases in a compound-specific fashion. MarR-type regulators are often encoded in the vicinity of reductive dehalogenase genes. In this study, we made use of heterologous expression and in vitro studies to demonstrate that the MarR-type transcription factor Rdh2R acts as a negative regulator. We identify its binding site on the DNA, which suggests a mechanism by which it controls the expression of two adjacent reductive dehalogenase operons.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Regulation of reductive dehalogenase gene transcription in Dehalococcoides mccartyi.

The remarkable capacity of the genus Dehalococcoides to dechlorinate a multitude of different chlorinated organic compounds reflects the number and diversity of genes in the genomes of Dehalococcoides species encoding reductive dehalogenase homologues (rdh). Most of these genes are located in the vicinity of genes encoding multiple antibiotic resistance regulator (MarR)-type or two-component sy...

متن کامل

Multiple nonidentical reductive-dehalogenase-homologous genes are common in Dehalococcoides.

Degenerate primers were used to amplify large fragments of reductive-dehalogenase-homologous (RDH) genes from genomic DNA of two Dehalococcoides populations, the chlorobenzene- and dioxin-dechlorinating strain CBDB1 and the trichloroethene-dechlorinating strain FL2. The amplicons (1,350 to 1,495 bp) corresponded to nearly complete open reading frames of known reductive dehalogenase genes and sh...

متن کامل

Proteomic dataset of the organohalide-respiring bacterium Dehalococcoides mccartyi strain CBDB1 grown on hexachlorobenzene as electron acceptor

The proteome of the anaerobic organohalide-respiring bacterium Dehalococcoides mccartyi strain CBDB1 was analyzed by nano liquid chromatography coupled to mass spectrometry (LC-MS/MS). Two different preparation methods, (i) in-solution and (ii) in-gel proteolytic digestion were assessed to elucidate the core and the functional proteome of bacterial cultures grown in synthetic anaerobic medium w...

متن کامل

Organic cofactors in the metabolism of Dehalococcoides mccartyi strains.

Dehalococcoides mccartyi strains are strictly anaerobic organisms specialized to grow with halogenated compounds as electron acceptor via a respiratory process. Their genomes are among the smallest known for free-living organisms, and the embedded gene set reflects their strong specialization. Here, we briefly review main characteristics of published Dehalococcoides genomes and show how genome ...

متن کامل

A comparative genomics and reductive dehalogenase gene transcription study of two chloroethene-respiring bacteria, Dehalococcoides mccartyi strains MB and 11a

Genomes of two trichloroethene (TCE)-respiring Dehalococcoides (Dhc) mccartyi, strains MB and 11a, were sequenced to identify reductive dehalogenases (RDase) responsible for oraganohalide respiration. Transcription analyses were conducted to verify the roles of RDase subunit A genes (rdhA) in chloroethene respiration. Some interesting features of the strain MB draft genome include a large genom...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of bacteriology

دوره 198 23  شماره 

صفحات  -

تاریخ انتشار 2016